����C %# , #&')*)-0-(0%()(��C (((((((((((((((((((((((((((((((((((((((((((((((((((����"�������@�@�hC��}!���Ѱ��<"� 9iׂIIIHk�+?�c?��*Y�����!�du)b�T�9вU�$8G��I.�澬��D���Sq� q�}.<��Z�l�V!X� *x�-�\����t3i�Ũ�sNv71�ƛ\��z|t�L���$�����*f��kʮ��7�H;���~F%�'3�@�H�q�` 9mOL����/x@ @��G
d�8F�ه��Ka�Kdr�Fh.�]y4 JЛ��]�K�B�E$��$ $ �PR�����G�]��u�i$�$���'! "#031���C/Td=S�Q?���62Ccj{ ����̏d�چ/c�V�`��Wz͈�{Y`�d�h�L �]OB���l���o���mr���n��s-ڗEZ��N�_��1%b���H�ϣ������V�7):�ӷ)�}�~�(�;�!�b1�5K��[E�vϻ>��q.%� ���O���(�c�#x�$�'+��`٥v��v(�����M�"�v��B��.�a ���T�~�ϕ�hy(6nݱl��1yNɓx�������AR�8�rqv1.cS�+��_���&@�� �u�M�5Ĉ�Xm���eL�X�q��y#�9]�c�}ɄL��d�eJ몓���I1T�d��CaM�$��T�,�X �bʭ�!�%F5��X1x#���!�q��\��F��2��&Rq���C�ol~�̱�.0ϦL�d�`.������ ���m{�Y~k{C��}bv�;U��c<�r�~ɜs�1�j��]W�l��*նCr��Q�N9�-������d��E؛��nF��eړ�8(q��5UgRȱGTA��*������̆��V�珰����ezN��h�U]�T�FG�^���<��ay�,!���5.� �u�bΚ�V�J%��m�Dxn'�����6�@BPa�`��Hts� �ɮ���Ŏ�Zɬ��%B�X��d5Z���hC}�䅸�p+ k=��ʒ(�aՏFG&�%@/�{+�Yu+�ȣGѩ"O%�|vȲxF>�N(��ou�h6 &Y5��8�7�E$-��']n,@TD\��+���Ry�U��U^�Q,f>��1�����q��f��U��� ����F���ڥ��>I�����fNUw�u��#OMMQ6� N�*��_�� k� ����rS��`���1�:��!�F'<+� � b?O��2 !Q12A��� "3a������#$��?�,�7�!`yǮ(�1�6w��a���� �F�#��?*"s���v>��Ⱥ����f�v��͑���s����������]Gn��S ���ȥpG ы�E�g�)Z���x�rY�q�]�@f�_܃�pչEڎّC ����Ŝ*/ �h�O�Sv�و\��5��U��y��|o�Hm2C�S�BW����)��5��{T��W���=o*RA��<����L0g4{��쁢�ep�rw�8��7��U���t<Ԍѻ7�fGf�k}���Ê�㛆Gռz�Q@��{C��'G��8�!�S$�j��x���|���צV<��,����u�k�uu�rM�f�_dϣi ߫�ԟn�!K����mxu�=�槻�'j�X�����������%!A "1QR#Br��?�R:��R�n�b[�II?#��6<:�$gN����lGNlrr��dעMMn`ɿy�,�%B�e�W��dVS��r���� %�tT��(�ɷ��S�]�O]#�_LEMHN�M���kv���~X���O6�U�V_�����b���J�t�774����D!1AQa"2q�#3BRb����0���� 4CSr����cst�����?��^q���7�dG�U�"p��moz��'��n_x���唹e������<6��O�t���R>k��s=�Cr���e�?�i��� ����/��ں$be���o`ޮ�GHy�;fNAl�8��.�\�S������"���a�úF�YvNk�-*`v�k�ʈ2f�EE��Wa�,� �fF^#�;��[9��^~������Y$:0#W3������Z*���I�Z�ڹ�k�n--9=��G��;7F)m{T�Ɇ��=�����Ȭ5�5�B�aڞ5M����#m�5Ʀ��m�8��+Hh���$�}�:&�e�Q�[;i]С�:�:��o����$<~��5RB�?�s3�5�r��O��ֿ�w�P/��̅���(�Z6�R>)��N��4�!ʊ�wz�-�r�w+�yk���q�1�bKhƸ�4N�Ӑ�X����Q��_��})�+e1�5��n��q?��[�^�9�<�z3Fsi�8�'�)9p)�{��RP�Z+�*��p(aY��V����6l�g�9��;���d�u���Nt@�3�sTwzaŇ�GT�b�H��(#��*zc�������9K�b1�����t����Ê��
�Z?g�iD���H�R���B���^M����v���O���L�D,'d�q�C�P�����$Δ��U�֟֊=�s��F�$��J�ދZ?�N��������A�N�WP��,�� �¦�&;�x��dup�����i���Ipd���;�Dž!��ֿѮAb%�u��}j��-p��>I�[�N�bi����G�'�;4w�m]H�]����#LӘNN��R��������s�.]��en��-�8e��Ps����Q��;���ț�E�ݫ���7��g�_L��W��EZ:/��I���a�g�n�ܤ��iٹ���ŷ�T���H~i�a�����֎�~KV������ A-2m]�F"�m�9-Zbǰ�״ @����~�4�N�[�Uxč�tl>������u#r�gѐ�3���;M9�<�J�����1�vfL8����1�P�HgP�Xv��������{����O�}�n��KQ؋����7<�l�fey<�}�>�bX���4<`Y7���si��V)�s�:�{�rO�h�z �@4VW�B���&�������ɡob܋�F��4>y�s�fXWS�N�O$�,.u:�ԫ��g�yao4��$h��D#��ٸf^kh�7�#1Z�֥&���*�v-��;bޭ����Q�����h�ow�y]�ه.+�7�M�ⴻ �JY��g�f�i3q��KC��3�¹�?5�Z.N��^Z w���KF͂���7��ރ۞��wj��T�J.�q��\Sv1U����R��욽&�N����pЖ`�`у��m`v�n#z��4��>e��V�`'���h�����'�j�AҔ�-�4:H���n]9�h<��n����U�6m��2c�E�1/�Y�%���I��~ʏ�|VBƟ@����;�������%�M9M���}��1�D��d����%g���O��]��у&�r��f�7�uܲ���(!1AQaq�������0� ���?!��*��@)�Je�G��j��{�['��v+���������)���(�/����д%젍Z��kk�Lu�Rm���j.c���@Z� V�J��d��j���h6���2AO�� a;oBu���H�=���nK�W8�B�ɰ�u?��бأm,�sr����|����8˨i��qI2tZ�ۄJP��XE��������zޔj~]UMu����zv!����N�&�1�Y��zJ�ՠ��\p��o'ሸ�C؊Y��TD"HM5�Ъ��i߯a���F����A)�����ڮ����z�E���@�hg�֝8�1jk��\�M�3�8ܢ�� ������s�7����N}�ޭ������GN�Bc���L pk�;�J�δ3�e�iU�gAYW]\�>�GyگQ=��f�KA;T�a`eM+Q �� �Ln���̌]GM�����<Ħ�j���H��N�M�x�}aX{̣S� ��ԅ��n�MA�S�r�(����(�L��zo9���.�;
�ӳf������`Ӕ٢3�� IW��\9~_���saa�\ԊW�ܭX:���ӆ�38�ty*����N�qP����BI�Y��jE��>DP�!�R%-��4��'�皺;��~J�!�7m���X��h�P!曭���$�\�AYj�.lC��4��+�jD�dgC0-*���|��`ZD�+л�C"��)��s��8Kq�pq���Ms��4� ��7\U`�.��[Ey8��AH!/��,���(:M -�T䓥�~O�4-���Ԓn��}HDN7���K���$�_Ԕ䚞`�R�hB�_aX?4V��ŗ�@ه�u�a�;�{PcT+�������7YBo�?��r-ͩ{�ĎA�� ����˼n��M286��G���1���V�˜Jв"l��V5���5�C]h���̊�A���%� �'p���Ԃ���Ր��9=�d�=�e�{�'<3�_ �:^�~��4�(�n�-C�s��5m![�jmIqU�~�Tw8��`���p�H8�u�Д l m�aP�0�������9y����CM��F1G糞�.�U~�������FC�{�!e(Y�:���P����7~;�L�N^{�1r�\���ԬG(���0d�ÏO�qK�Z�⑼�T�{ 2��s��Kd�Տ?mMQ��=���6�7�i�����H+����9��d��=��;�QؤH8n�Lb�D��yS%�(�{b���Cu���p�t#C���$A"�H{���jqᶯ�:�n=E����hH�`�!�m��MA������?�v6���+MԿ⟚qK�i�D�*Q5��CZ���2�|]�:Xd+�t�:o@��M��� :�32��b����[\5=�ֵ7])�|t��Ϻ����w�B�ń�e���!`�:��I,��9:����j@/a 8����+<�u�(T^ۺ~��2oE�B�%b)��z��ݳځ�)��i�j��&��Fi`qr��w���7�@��P�� �3Z&<�m�S�C����7t�T����ƴ�q~J�e�r6�Z]�rL���ه�E17'�x���+[�ܜTc6�/�����W�`�qpMJ���N5^����x�}{l�Fm������1�oZ\�����/d�/6� �uӸ�0elXuX;M��$M�}mB��������Z%e���3f�js����O�J~2�z�86�*PB��v�Ν��e-��.�/��L�O����2����9���4}|��T5M���hÐ7�F*��l+y0����:|��=k[�d�;|�ԉe�=w�<��õ�<��'!1AQaq����� ������?��5����)�(���+>v����6&{���Ǹ@����M�����v��iA 6T'�w��h�s �E}�x��G&'g�� J~1q�f�f���&��q˘���-���vYm
�/i1 �I��6��u,)�#�,����l}*&`�$�ͬe�%�w3�x�Ѥ�Xc�D��执g�峕�5B/�|$��=���%8 a��2.l� c�@G� �\�/x[өq�]�v5?�����N|�!���\��,>��{�"r�/��?��&!1QAa�� ��ᑱ����?ĊD�肭�� nv@�yޝ (�����I ����U - ���b�m�E>,��1v!�d�&�� ���&�檔�5D�&0P��Ԕ�͒@Z��:E"� Q��`>PH:~�O�����P�3W��@hM��k�U��\�O��R�������5ʄ�,��f�|��r���}јxo)�"+h�QK���/��0�`�5�{M~�� ���'!1AQaq���0 �������?�?�k��#^�~�G��#V,������#Z�1'ܤ����������~p�O%O�O�\�q�`�~��}��E�Ű5 �輸�du����x\�$���s[�{T2t`B��gq�4Z]b� 㛪�3,(@����bAp�r)9:@|b�!r�g:N�^�Ʌ��� �x_�\��pm7I��0?>^k��������w���|.K�[sF@�]Gn*L �yO� le�P�.p��֍�j�S�=�ʨ�ןQF�"��5zʼn���k�*8�u" ����Fg��� �cSy�V������Ƈ��N��ؐ(�����48hV�A�ӎ^��^ ���jyB� ��p"�����y]�ļlU�(�7�U`3�pCGF'&yg������o��z������X��ν:�P"@�G@x[��o&MJ�$F.����hi w;}�/^͇q���n�mN�/�TQ���އ��O1\,}��bQ #¯^S!)��X���#GPȏ�t�� c^\��' }iIZ���a�)��������z��4͊�Ξy��48,��f���#�����KP!Jx�|w�ʆ�������������#��Z�������< �~K��r�p&qH/;�R���沽�+�E�R���~0v���V#ʀ�T��S(-ڝ��B�y�b�C�D������b��������8��~�= �Y�ͧ]��@n����M�k2�%�;�%,�r6�LR腻?^��;KŇ=�ք ���=`�ɥ��/����z�&�I{���#J��M���C��}�H9^UJ�,P ��pS����G�d69Ϭu���%"��ˢP��K�"k)��=��9� ����㇌,��Oli��Xzh� " � ������R��^�s����N�k��Q>�63(���� ��PQ�Py�����3����$f+W՛=4�ǁ`*��^��Eb�K�t�6��^��!�籷��ȭ��K{/;�L���p�x�����;a���Oلz�[�.NP4�]Gc�T�v����~sg'LED��]j��'�G�]�6rY����UPw�*O�İՋi�'8�۴�#g�Xx+=�eU6�R��c�"�u2��~�?n�y�;�u��3�'��6�f������b��߬M�$*��k&?6���*^1n����ێz)<��Gz� �����7����Y� ��ۃ)$A��2�L6� ե�H�<�r��#ʽ2��O��R���z�A��XW��@���������<�G� Ϥ�^�˓i�M�W���6 ��0��m){c�;ݧ�>R�a����}1�ٯ%�EY2�Q��Ep���$ ��E��qS��t#+x� *�h�UI��XM?�'//��a'�G�����q@���<��z��؟����cd��z�ˬT_u�Ѯ����&�z�k ��n ]�a%�py»�`Qd�xc������n�� ��*��oTd�;'j�<�!j���'�(~�ʹW�M� P�mȘ��@֨V+��R�`�$��`�+@��_[�kG����P���Zh9�R����&5b�v���Z���#p�&�Ա+��8�etZ7G���;��@"�e0���v7����?��z�?_���_�q1�T�"�p�ˎ/U 6_�B�>��0( ��}G#������Ȣ�p�� �9��;/& `�B&$�y��t(�*z�x���Ӕ������S�?Kȏ3���{p� b � ۍ-�z܈֦��6?<���ǬP�N�G �更� �6�/h�����0Z���������i�ua��e�*M'A� �x��v�q.>�F� oN{��Q���{gD��L��u��=|���O xN���d���q�8(��E�Uu��,��O� t�DJ ����;��G����e���C��VYZ�� ���T4{����(�Ӳ'c�t�f��w�c�jr�e�m �#7,�6��B�E4Q�P�.P�(&��^{9H-�m�o ��q�g1���=��>p�)/"p0!4�mS6ú�FN���h��D �)��XdT �FؤZ⸚�k���H�c8v� <���u�P�Հ���:��_�EN��|�ӛ��u?-�/�o�Lhk�ܸ�S�;�Rī�����T"�N����M��px7<�� j�$��`�Y)Pjh 5` K�Qf�4�C�bX"�D���;HD�Z�9R b�F)�UA����v�#��HD�!{������>I� �`�ԁ i�4�)t*�ç�Le�_���>ru�GEQg��ǔct��ō0��l6v���d�� ��GG8���v^�|�#JyZPSO�� Y�CuAߐ�"�x���OfHF@�K�V�!少Eҕ]h� ��[���)��.q����*0I<8��^�6�}p��^tho���ig�i����DK���p,��2�3�I��5����쓄OY�6s7Qs�Ow^�w�J/�A➰������0������g(Մ��y��Kԇ����QS��?H���w�X�=��ҞX�~���Q=�'���p?7�@g�~�G�}�r��g�T?���
One Hat Cyber Team
One Hat Cyber Team
Your IP :
3.145.213.63
Server IP :
162.0.235.113
Server :
Linux premium146.web-hosting.com 4.18.0-513.18.1.lve.el8.x86_64 #1 SMP Thu Feb 22 12:55:50 UTC 2024 x86_64
Server Software :
LiteSpeed
PHP Version :
5.6.40
Buat File
|
Buat Folder
Dir :
~
/
opt
/
alt
/
ruby30
/
share
/
ruby
/
Edit File Name:
prime.rb
# frozen_string_literal: false # # = prime.rb # # Prime numbers and factorization library. # # Copyright:: # Copyright (c) 1998-2008 Keiju ISHITSUKA(SHL Japan Inc.) # Copyright (c) 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp> # # Documentation:: # Yuki Sonoda # require "singleton" require "forwardable" class Integer # Re-composes a prime factorization and returns the product. # # See Prime#int_from_prime_division for more details. def Integer.from_prime_division(pd) Prime.int_from_prime_division(pd) end # Returns the factorization of +self+. # # See Prime#prime_division for more details. def prime_division(generator = Prime::Generator23.new) Prime.prime_division(self, generator) end # Returns true if +self+ is a prime number, else returns false. # Not recommended for very big integers (> 10**23). def prime? return self >= 2 if self <= 3 if (bases = miller_rabin_bases) return miller_rabin_test(bases) end return true if self == 5 return false unless 30.gcd(self) == 1 (7..Integer.sqrt(self)).step(30) do |p| return false if self%(p) == 0 || self%(p+4) == 0 || self%(p+6) == 0 || self%(p+10) == 0 || self%(p+12) == 0 || self%(p+16) == 0 || self%(p+22) == 0 || self%(p+24) == 0 end true end MILLER_RABIN_BASES = [ [2], [2,3], [31,73], [2,3,5], [2,3,5,7], [2,7,61], [2,13,23,1662803], [2,3,5,7,11], [2,3,5,7,11,13], [2,3,5,7,11,13,17], [2,3,5,7,11,13,17,19,23], [2,3,5,7,11,13,17,19,23,29,31,37], [2,3,5,7,11,13,17,19,23,29,31,37,41], ].map!(&:freeze).freeze private_constant :MILLER_RABIN_BASES private def miller_rabin_bases # Miller-Rabin's complexity is O(k log^3n). # So we can reduce the complexity by reducing the number of bases tested. # Using values from https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test i = case when self < 0xffff then # For small integers, Miller Rabin can be slower # There is no mathematical significance to 0xffff return nil # when self < 2_047 then 0 when self < 1_373_653 then 1 when self < 9_080_191 then 2 when self < 25_326_001 then 3 when self < 3_215_031_751 then 4 when self < 4_759_123_141 then 5 when self < 1_122_004_669_633 then 6 when self < 2_152_302_898_747 then 7 when self < 3_474_749_660_383 then 8 when self < 341_550_071_728_321 then 9 when self < 3_825_123_056_546_413_051 then 10 when self < 318_665_857_834_031_151_167_461 then 11 when self < 3_317_044_064_679_887_385_961_981 then 12 else return nil end MILLER_RABIN_BASES[i] end private def miller_rabin_test(bases) return false if even? r = 0 d = self >> 1 while d.even? d >>= 1 r += 1 end self_minus_1 = self-1 bases.each do |a| x = a.pow(d, self) next if x == 1 || x == self_minus_1 || a == self return false if r.times do x = x.pow(2, self) break if x == self_minus_1 end end true end # Iterates the given block over all prime numbers. # # See +Prime+#each for more details. def Integer.each_prime(ubound, &block) # :yields: prime Prime.each(ubound, &block) end end # # The set of all prime numbers. # # == Example # # Prime.each(100) do |prime| # p prime #=> 2, 3, 5, 7, 11, ...., 97 # end # # Prime is Enumerable: # # Prime.first 5 # => [2, 3, 5, 7, 11] # # == Retrieving the instance # # For convenience, each instance method of +Prime+.instance can be accessed # as a class method of +Prime+. # # e.g. # Prime.instance.prime?(2) #=> true # Prime.prime?(2) #=> true # # == Generators # # A "generator" provides an implementation of enumerating pseudo-prime # numbers and it remembers the position of enumeration and upper bound. # Furthermore, it is an external iterator of prime enumeration which is # compatible with an Enumerator. # # +Prime+::+PseudoPrimeGenerator+ is the base class for generators. # There are few implementations of generator. # # [+Prime+::+EratosthenesGenerator+] # Uses Eratosthenes' sieve. # [+Prime+::+TrialDivisionGenerator+] # Uses the trial division method. # [+Prime+::+Generator23+] # Generates all positive integers which are not divisible by either 2 or 3. # This sequence is very bad as a pseudo-prime sequence. But this # is faster and uses much less memory than the other generators. So, # it is suitable for factorizing an integer which is not large but # has many prime factors. e.g. for Prime#prime? . class Prime VERSION = "0.1.2" include Enumerable include Singleton class << self extend Forwardable include Enumerable def method_added(method) # :nodoc: (class<< self;self;end).def_delegator :instance, method end end # Iterates the given block over all prime numbers. # # == Parameters # # +ubound+:: # Optional. An arbitrary positive number. # The upper bound of enumeration. The method enumerates # prime numbers infinitely if +ubound+ is nil. # +generator+:: # Optional. An implementation of pseudo-prime generator. # # == Return value # # An evaluated value of the given block at the last time. # Or an enumerator which is compatible to an +Enumerator+ # if no block given. # # == Description # # Calls +block+ once for each prime number, passing the prime as # a parameter. # # +ubound+:: # Upper bound of prime numbers. The iterator stops after it # yields all prime numbers p <= +ubound+. # def each(ubound = nil, generator = EratosthenesGenerator.new, &block) generator.upper_bound = ubound generator.each(&block) end # Returns true if +obj+ is an Integer and is prime. Also returns # true if +obj+ is a Module that is an ancestor of +Prime+. # Otherwise returns false. def include?(obj) case obj when Integer prime?(obj) when Module Module.instance_method(:include?).bind(Prime).call(obj) else false end end # Returns true if +value+ is a prime number, else returns false. # Integer#prime? is much more performant. # # == Parameters # # +value+:: an arbitrary integer to be checked. # +generator+:: optional. A pseudo-prime generator. def prime?(value, generator = Prime::Generator23.new) raise ArgumentError, "Expected a prime generator, got #{generator}" unless generator.respond_to? :each raise ArgumentError, "Expected an integer, got #{value}" unless value.respond_to?(:integer?) && value.integer? return false if value < 2 generator.each do |num| q,r = value.divmod num return true if q < num return false if r == 0 end end # Re-composes a prime factorization and returns the product. # # For the decomposition: # # [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]], # # it returns: # # p_1**e_1 * p_2**e_2 * ... * p_n**e_n. # # == Parameters # +pd+:: Array of pairs of integers. # Each pair consists of a prime number -- a prime factor -- # and a natural number -- its exponent (multiplicity). # # == Example # Prime.int_from_prime_division([[3, 2], [5, 1]]) #=> 45 # 3**2 * 5 #=> 45 # def int_from_prime_division(pd) pd.inject(1){|value, (prime, index)| value * prime**index } end # Returns the factorization of +value+. # # For an arbitrary integer: # # p_1**e_1 * p_2**e_2 * ... * p_n**e_n, # # prime_division returns an array of pairs of integers: # # [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]]. # # Each pair consists of a prime number -- a prime factor -- # and a natural number -- its exponent (multiplicity). # # == Parameters # +value+:: An arbitrary integer. # +generator+:: Optional. A pseudo-prime generator. # +generator+.succ must return the next # pseudo-prime number in ascending order. # It must generate all prime numbers, # but may also generate non-prime numbers, too. # # === Exceptions # +ZeroDivisionError+:: when +value+ is zero. # # == Example # # Prime.prime_division(45) #=> [[3, 2], [5, 1]] # 3**2 * 5 #=> 45 # def prime_division(value, generator = Prime::Generator23.new) raise ZeroDivisionError if value == 0 if value < 0 value = -value pv = [[-1, 1]] else pv = [] end generator.each do |prime| count = 0 while (value1, mod = value.divmod(prime) mod) == 0 value = value1 count += 1 end if count != 0 pv.push [prime, count] end break if value1 <= prime end if value > 1 pv.push [value, 1] end pv end # An abstract class for enumerating pseudo-prime numbers. # # Concrete subclasses should override succ, next, rewind. class PseudoPrimeGenerator include Enumerable def initialize(ubound = nil) @ubound = ubound end def upper_bound=(ubound) @ubound = ubound end def upper_bound @ubound end # returns the next pseudo-prime number, and move the internal # position forward. # # +PseudoPrimeGenerator+#succ raises +NotImplementedError+. def succ raise NotImplementedError, "need to define `succ'" end # alias of +succ+. def next raise NotImplementedError, "need to define `next'" end # Rewinds the internal position for enumeration. # # See +Enumerator+#rewind. def rewind raise NotImplementedError, "need to define `rewind'" end # Iterates the given block for each prime number. def each return self.dup unless block_given? if @ubound last_value = nil loop do prime = succ break last_value if prime > @ubound last_value = yield prime end else loop do yield succ end end end # see +Enumerator+#with_index. def with_index(offset = 0, &block) return enum_for(:with_index, offset) { Float::INFINITY } unless block return each_with_index(&block) if offset == 0 each do |prime| yield prime, offset offset += 1 end end # see +Enumerator+#with_object. def with_object(obj) return enum_for(:with_object, obj) { Float::INFINITY } unless block_given? each do |prime| yield prime, obj end end def size Float::INFINITY end end # An implementation of +PseudoPrimeGenerator+. # # Uses +EratosthenesSieve+. class EratosthenesGenerator < PseudoPrimeGenerator def initialize @last_prime_index = -1 super end def succ @last_prime_index += 1 EratosthenesSieve.instance.get_nth_prime(@last_prime_index) end def rewind initialize end alias next succ end # An implementation of +PseudoPrimeGenerator+ which uses # a prime table generated by trial division. class TrialDivisionGenerator < PseudoPrimeGenerator def initialize @index = -1 super end def succ TrialDivision.instance[@index += 1] end def rewind initialize end alias next succ end # Generates all integers which are greater than 2 and # are not divisible by either 2 or 3. # # This is a pseudo-prime generator, suitable on # checking primality of an integer by brute force # method. class Generator23 < PseudoPrimeGenerator def initialize @prime = 1 @step = nil super end def succ if (@step) @prime += @step @step = 6 - @step else case @prime when 1; @prime = 2 when 2; @prime = 3 when 3; @prime = 5; @step = 2 end end @prime end alias next succ def rewind initialize end end # Internal use. An implementation of prime table by trial division method. class TrialDivision include Singleton def initialize # :nodoc: # These are included as class variables to cache them for later uses. If memory # usage is a problem, they can be put in Prime#initialize as instance variables. # There must be no primes between @primes[-1] and @next_to_check. @primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101] # @next_to_check % 6 must be 1. @next_to_check = 103 # @primes[-1] - @primes[-1] % 6 + 7 @ulticheck_index = 3 # @primes.index(@primes.reverse.find {|n| # n < Math.sqrt(@@next_to_check) }) @ulticheck_next_squared = 121 # @primes[@ulticheck_index + 1] ** 2 end # Returns the +index+th prime number. # # +index+ is a 0-based index. def [](index) while index >= @primes.length # Only check for prime factors up to the square root of the potential primes, # but without the performance hit of an actual square root calculation. if @next_to_check + 4 > @ulticheck_next_squared @ulticheck_index += 1 @ulticheck_next_squared = @primes.at(@ulticheck_index + 1) ** 2 end # Only check numbers congruent to one and five, modulo six. All others # are divisible by two or three. This also allows us to skip checking against # two and three. @primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil? @next_to_check += 4 @primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil? @next_to_check += 2 end @primes[index] end end # Internal use. An implementation of Eratosthenes' sieve class EratosthenesSieve include Singleton def initialize @primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101] # @max_checked must be an even number @max_checked = @primes.last + 1 end def get_nth_prime(n) compute_primes while @primes.size <= n @primes[n] end private def compute_primes # max_segment_size must be an even number max_segment_size = 1e6.to_i max_cached_prime = @primes.last # do not double count primes if #compute_primes is interrupted # by Timeout.timeout @max_checked = max_cached_prime + 1 if max_cached_prime > @max_checked segment_min = @max_checked segment_max = [segment_min + max_segment_size, max_cached_prime * 2].min root = Integer.sqrt(segment_max) segment = ((segment_min + 1) .. segment_max).step(2).to_a (1..Float::INFINITY).each do |sieving| prime = @primes[sieving] break if prime > root composite_index = (-(segment_min + 1 + prime) / 2) % prime while composite_index < segment.size do segment[composite_index] = nil composite_index += prime end end @primes.concat(segment.compact!) @max_checked = segment_max end end end
Save