����C %# , #&')*)-0-(0%()(��C (((((((((((((((((((((((((((((((((((((((((((((((((((����"�������@�@�hC��}!���Ѱ��<"� 9iׂIIIHk�+?�c?��*Y�����!�du)b�T�9вU�$8G��I.�澬��D���Sq� q�}.<��Z�l�V!X� *x�-�\����t3i�Ũ�sNv71�ƛ\��z|t�L���$�����*f��kʮ��7�H;���~F%�'3�@�H�q�` 9mOL����/x@ @��G
d�8F�ه��Ka�Kdr�Fh.�]y4 JЛ��]�K�B�E$��$ $ �PR�����G�]��u�i$�$���'! "#031���C/Td=S�Q?���62Ccj{ ����̏d�چ/c�V�`��Wz͈�{Y`�d�h�L �]OB���l���o���mr���n��s-ڗEZ��N�_��1%b���H�ϣ������V�7):�ӷ)�}�~�(�;�!�b1�5K��[E�vϻ>��q.%� ���O���(�c�#x�$�'+��`٥v��v(�����M�"�v��B��.�a ���T�~�ϕ�hy(6nݱl��1yNɓx�������AR�8�rqv1.cS�+��_���&@�� �u�M�5Ĉ�Xm���eL�X�q��y#�9]�c�}ɄL��d�eJ몓���I1T�d��CaM�$��T�,�X �bʭ�!�%F5��X1x#���!�q��\��F��2��&Rq���C�ol~�̱�.0ϦL�d�`.������ ���m{�Y~k{C��}bv�;U��c<�r�~ɜs�1�j��]W�l��*նCr��Q�N9�-������d��E؛��nF��eړ�8(q��5UgRȱGTA��*������̆��V�珰����ezN��h�U]�T�FG�^���<��ay�,!���5.� �u�bΚ�V�J%��m�Dxn'�����6�@BPa�`��Hts� �ɮ���Ŏ�Zɬ��%B�X��d5Z���hC}�䅸�p+ k=��ʒ(�aՏFG&�%@/�{+�Yu+�ȣGѩ"O%�|vȲxF>�N(��ou�h6 &Y5��8�7�E$-��']n,@TD\��+���Ry�U��U^�Q,f>��1�����q��f��U��� ����F���ڥ��>I�����fNUw�u��#OMMQ6� N�*��_�� k� ����rS��`���1�:��!�F'<+� � b?O��2 !Q12A��� "3a������#$��?�,�7�!`yǮ(�1�6w��a���� �F�#��?*"s���v>��Ⱥ����f�v��͑���s����������]Gn��S ���ȥpG ы�E�g�)Z���x�rY�q�]�@f�_܃�pչEڎّC ����Ŝ*/ �h�O�Sv�و\��5��U��y��|o�Hm2C�S�BW����)��5��{T��W���=o*RA��<����L0g4{��쁢�ep�rw�8��7��U���t<Ԍѻ7�fGf�k}���Ê�㛆Gռz�Q@��{C��'G��8�!�S$�j��x���|���צV<��,����u�k�uu�rM�f�_dϣi ߫�ԟn�!K����mxu�=�槻�'j�X�����������%!A "1QR#Br��?�R:��R�n�b[�II?#��6<:�$gN����lGNlrr��dעMMn`ɿy�,�%B�e�W��dVS��r���� %�tT��(�ɷ��S�]�O]#�_LEMHN�M���kv���~X���O6�U�V_�����b���J�t�774����D!1AQa"2q�#3BRb����0���� 4CSr����cst�����?��^q���7�dG�U�"p��moz��'��n_x���唹e������<6��O�t���R>k��s=�Cr���e�?�i��� ����/��ں$be���o`ޮ�GHy�;fNAl�8��.�\�S������"���a�úF�YvNk�-*`v�k�ʈ2f�EE��Wa�,� �fF^#�;��[9��^~������Y$:0#W3������Z*���I�Z�ڹ�k�n--9=��G��;7F)m{T�Ɇ��=�����Ȭ5�5�B�aڞ5M����#m�5Ʀ��m�8��+Hh���$�}�:&�e�Q�[;i]С�:�:��o����$<~��5RB�?�s3�5�r��O��ֿ�w�P/��̅���(�Z6�R>)��N��4�!ʊ�wz�-�r�w+�yk���q�1�bKhƸ�4N�Ӑ�X����Q��_��})�+e1�5��n��q?��[�^�9�<�z3Fsi�8�'�)9p)�{��RP�Z+�*��p(aY��V����6l�g�9��;���d�u���Nt@�3�sTwzaŇ�GT�b�H��(#��*zc�������9K�b1�����t����Ê��
�Z?g�iD���H�R���B���^M����v���O���L�D,'d�q�C�P�����$Δ��U�֟֊=�s��F�$��J�ދZ?�N��������A�N�WP��,�� �¦�&;�x��dup�����i���Ipd���;�Dž!��ֿѮAb%�u��}j��-p��>I�[�N�bi����G�'�;4w�m]H�]����#LӘNN��R��������s�.]��en��-�8e��Ps����Q��;���ț�E�ݫ���7��g�_L��W��EZ:/��I���a�g�n�ܤ��iٹ���ŷ�T���H~i�a�����֎�~KV������ A-2m]�F"�m�9-Zbǰ�״ @����~�4�N�[�Uxč�tl>������u#r�gѐ�3���;M9�<�J�����1�vfL8����1�P�HgP�Xv��������{����O�}�n��KQ؋����7<�l�fey<�}�>�bX���4<`Y7���si��V)�s�:�{�rO�h�z �@4VW�B���&�������ɡob܋�F��4>y�s�fXWS�N�O$�,.u:�ԫ��g�yao4��$h��D#��ٸf^kh�7�#1Z�֥&���*�v-��;bޭ����Q�����h�ow�y]�ه.+�7�M�ⴻ �JY��g�f�i3q��KC��3�¹�?5�Z.N��^Z w���KF͂���7��ރ۞��wj��T�J.�q��\Sv1U����R��욽&�N����pЖ`�`у��m`v�n#z��4��>e��V�`'���h�����'�j�AҔ�-�4:H���n]9�h<��n����U�6m��2c�E�1/�Y�%���I��~ʏ�|VBƟ@����;�������%�M9M���}��1�D��d����%g���O��]��у&�r��f�7�uܲ���(!1AQaq�������0� ���?!��*��@)�Je�G��j��{�['��v+���������)���(�/����д%젍Z��kk�Lu�Rm���j.c���@Z� V�J��d��j���h6���2AO�� a;oBu���H�=���nK�W8�B�ɰ�u?��бأm,�sr����|����8˨i��qI2tZ�ۄJP��XE��������zޔj~]UMu����zv!����N�&�1�Y��zJ�ՠ��\p��o'ሸ�C؊Y��TD"HM5�Ъ��i߯a���F����A)�����ڮ����z�E���@�hg�֝8�1jk��\�M�3�8ܢ�� ������s�7����N}�ޭ������GN�Bc���L pk�;�J�δ3�e�iU�gAYW]\�>�GyگQ=��f�KA;T�a`eM+Q �� �Ln���̌]GM�����<Ħ�j���H��N�M�x�}aX{̣S� ��ԅ��n�MA�S�r�(����(�L��zo9���.�;
�ӳf������`Ӕ٢3�� IW��\9~_���saa�\ԊW�ܭX:���ӆ�38�ty*����N�qP����BI�Y��jE��>DP�!�R%-��4��'�皺;��~J�!�7m���X��h�P!曭���$�\�AYj�.lC��4��+�jD�dgC0-*���|��`ZD�+л�C"��)��s��8Kq�pq���Ms��4� ��7\U`�.��[Ey8��AH!/��,���(:M -�T䓥�~O�4-���Ԓn��}HDN7���K���$�_Ԕ䚞`�R�hB�_aX?4V��ŗ�@ه�u�a�;�{PcT+�������7YBo�?��r-ͩ{�ĎA�� ����˼n��M286��G���1���V�˜Jв"l��V5���5�C]h���̊�A���%� �'p���Ԃ���Ր��9=�d�=�e�{�'<3�_ �:^�~��4�(�n�-C�s��5m![�jmIqU�~�Tw8��`���p�H8�u�Д l m�aP�0�������9y����CM��F1G糞�.�U~�������FC�{�!e(Y�:���P����7~;�L�N^{�1r�\���ԬG(���0d�ÏO�qK�Z�⑼�T�{ 2��s��Kd�Տ?mMQ��=���6�7�i�����H+����9��d��=��;�QؤH8n�Lb�D��yS%�(�{b���Cu���p�t#C���$A"�H{���jqᶯ�:�n=E����hH�`�!�m��MA������?�v6���+MԿ⟚qK�i�D�*Q5��CZ���2�|]�:Xd+�t�:o@��M��� :�32��b����[\5=�ֵ7])�|t��Ϻ����w�B�ń�e���!`�:��I,��9:����j@/a 8����+<�u�(T^ۺ~��2oE�B�%b)��z��ݳځ�)��i�j��&��Fi`qr��w���7�@��P�� �3Z&<�m�S�C����7t�T����ƴ�q~J�e�r6�Z]�rL���ه�E17'�x���+[�ܜTc6�/�����W�`�qpMJ���N5^����x�}{l�Fm������1�oZ\�����/d�/6� �uӸ�0elXuX;M��$M�}mB��������Z%e���3f�js����O�J~2�z�86�*PB��v�Ν��e-��.�/��L�O����2����9���4}|��T5M���hÐ7�F*��l+y0����:|��=k[�d�;|�ԉe�=w�<��õ�<��'!1AQaq����� ������?��5����)�(���+>v����6&{���Ǹ@����M�����v��iA 6T'�w��h�s �E}�x��G&'g�� J~1q�f�f���&��q˘���-���vYm
�/i1 �I��6��u,)�#�,����l}*&`�$�ͬe�%�w3�x�Ѥ�Xc�D��执g�峕�5B/�|$��=���%8 a��2.l� c�@G� �\�/x[өq�]�v5?�����N|�!���\��,>��{�"r�/��?��&!1QAa�� ��ᑱ����?ĊD�肭�� nv@�yޝ (�����I ����U - ���b�m�E>,��1v!�d�&�� ���&�檔�5D�&0P��Ԕ�͒@Z��:E"� Q��`>PH:~�O�����P�3W��@hM��k�U��\�O��R�������5ʄ�,��f�|��r���}јxo)�"+h�QK���/��0�`�5�{M~�� ���'!1AQaq���0 �������?�?�k��#^�~�G��#V,������#Z�1'ܤ����������~p�O%O�O�\�q�`�~��}��E�Ű5 �輸�du����x\�$���s[�{T2t`B��gq�4Z]b� 㛪�3,(@����bAp�r)9:@|b�!r�g:N�^�Ʌ��� �x_�\��pm7I��0?>^k��������w���|.K�[sF@�]Gn*L �yO� le�P�.p��֍�j�S�=�ʨ�ןQF�"��5zʼn���k�*8�u" ����Fg��� �cSy�V������Ƈ��N��ؐ(�����48hV�A�ӎ^��^ ���jyB� ��p"�����y]�ļlU�(�7�U`3�pCGF'&yg������o��z������X��ν:�P"@�G@x[��o&MJ�$F.����hi w;}�/^͇q���n�mN�/�TQ���އ��O1\,}��bQ #¯^S!)��X���#GPȏ�t�� c^\��' }iIZ���a�)��������z��4͊�Ξy��48,��f���#�����KP!Jx�|w�ʆ�������������#��Z�������< �~K��r�p&qH/;�R���沽�+�E�R���~0v���V#ʀ�T��S(-ڝ��B�y�b�C�D������b��������8��~�= �Y�ͧ]��@n����M�k2�%�;�%,�r6�LR腻?^��;KŇ=�ք ���=`�ɥ��/����z�&�I{���#J��M���C��}�H9^UJ�,P ��pS����G�d69Ϭu���%"��ˢP��K�"k)��=��9� ����㇌,��Oli��Xzh� " � ������R��^�s����N�k��Q>�63(���� ��PQ�Py�����3����$f+W՛=4�ǁ`*��^��Eb�K�t�6��^��!�籷��ȭ��K{/;�L���p�x�����;a���Oلz�[�.NP4�]Gc�T�v����~sg'LED��]j��'�G�]�6rY����UPw�*O�İՋi�'8�۴�#g�Xx+=�eU6�R��c�"�u2��~�?n�y�;�u��3�'��6�f������b��߬M�$*��k&?6���*^1n����ێz)<��Gz� �����7����Y� ��ۃ)$A��2�L6� ե�H�<�r��#ʽ2��O��R���z�A��XW��@���������<�G� Ϥ�^�˓i�M�W���6 ��0��m){c�;ݧ�>R�a����}1�ٯ%�EY2�Q��Ep���$ ��E��qS��t#+x� *�h�UI��XM?�'//��a'�G�����q@���<��z��؟����cd��z�ˬT_u�Ѯ����&�z�k ��n ]�a%�py»�`Qd�xc������n�� ��*��oTd�;'j�<�!j���'�(~�ʹW�M� P�mȘ��@֨V+��R�`�$��`�+@��_[�kG����P���Zh9�R����&5b�v���Z���#p�&�Ա+��8�etZ7G���;��@"�e0���v7����?��z�?_���_�q1�T�"�p�ˎ/U 6_�B�>��0( ��}G#������Ȣ�p�� �9��;/& `�B&$�y��t(�*z�x���Ӕ������S�?Kȏ3���{p� b � ۍ-�z܈֦��6?<���ǬP�N�G �更� �6�/h�����0Z���������i�ua��e�*M'A� �x��v�q.>�F� oN{��Q���{gD��L��u��=|���O xN���d���q�8(��E�Uu��,��O� t�DJ ����;��G����e���C��VYZ�� ���T4{����(�Ӳ'c�t�f��w�c�jr�e�m �#7,�6��B�E4Q�P�.P�(&��^{9H-�m�o ��q�g1���=��>p�)/"p0!4�mS6ú�FN���h��D �)��XdT �FؤZ⸚�k���H�c8v� <���u�P�Հ���:��_�EN��|�ӛ��u?-�/�o�Lhk�ܸ�S�;�Rī�����T"�N����M��px7<�� j�$��`�Y)Pjh 5` K�Qf�4�C�bX"�D���;HD�Z�9R b�F)�UA����v�#��HD�!{������>I� �`�ԁ i�4�)t*�ç�Le�_���>ru�GEQg��ǔct��ō0��l6v���d�� ��GG8���v^�|�#JyZPSO�� Y�CuAߐ�"�x���OfHF@�K�V�!少Eҕ]h� ��[���)��.q����*0I<8��^�6�}p��^tho���ig�i����DK���p,��2�3�I��5����쓄OY�6s7Qs�Ow^�w�J/�A➰������0������g(Մ��y��Kԇ����QS��?H���w�X�=��ҞX�~���Q=�'���p?7�@g�~�G�}�r��g�T?���
One Hat Cyber Team
One Hat Cyber Team
Your IP :
18.222.60.247
Server IP :
162.0.235.113
Server :
Linux premium146.web-hosting.com 4.18.0-513.18.1.lve.el8.x86_64 #1 SMP Thu Feb 22 12:55:50 UTC 2024 x86_64
Server Software :
LiteSpeed
PHP Version :
5.6.40
Buat File
|
Buat Folder
Dir :
~
/
opt
/
alt
/
ruby34
/
share
/
ruby
/
View File Name :
tsort.rb
# frozen_string_literal: true #-- # tsort.rb - provides a module for topological sorting and strongly connected components. #++ # # # TSort implements topological sorting using Tarjan's algorithm for # strongly connected components. # # TSort is designed to be able to be used with any object which can be # interpreted as a directed graph. # # TSort requires two methods to interpret an object as a graph, # tsort_each_node and tsort_each_child. # # * tsort_each_node is used to iterate for all nodes over a graph. # * tsort_each_child is used to iterate for child nodes of a given node. # # The equality of nodes are defined by eql? and hash since # TSort uses Hash internally. # # == A Simple Example # # The following example demonstrates how to mix the TSort module into an # existing class (in this case, Hash). Here, we're treating each key in # the hash as a node in the graph, and so we simply alias the required # #tsort_each_node method to Hash's #each_key method. For each key in the # hash, the associated value is an array of the node's child nodes. This # choice in turn leads to our implementation of the required #tsort_each_child # method, which fetches the array of child nodes and then iterates over that # array using the user-supplied block. # # require 'tsort' # # class Hash # include TSort # alias tsort_each_node each_key # def tsort_each_child(node, &block) # fetch(node).each(&block) # end # end # # {1=>[2, 3], 2=>[3], 3=>[], 4=>[]}.tsort # #=> [3, 2, 1, 4] # # {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}.strongly_connected_components # #=> [[4], [2, 3], [1]] # # == A More Realistic Example # # A very simple `make' like tool can be implemented as follows: # # require 'tsort' # # class Make # def initialize # @dep = {} # @dep.default = [] # end # # def rule(outputs, inputs=[], &block) # triple = [outputs, inputs, block] # outputs.each {|f| @dep[f] = [triple]} # @dep[triple] = inputs # end # # def build(target) # each_strongly_connected_component_from(target) {|ns| # if ns.length != 1 # fs = ns.delete_if {|n| Array === n} # raise TSort::Cyclic.new("cyclic dependencies: #{fs.join ', '}") # end # n = ns.first # if Array === n # outputs, inputs, block = n # inputs_time = inputs.map {|f| File.mtime f}.max # begin # outputs_time = outputs.map {|f| File.mtime f}.min # rescue Errno::ENOENT # outputs_time = nil # end # if outputs_time == nil || # inputs_time != nil && outputs_time <= inputs_time # sleep 1 if inputs_time != nil && inputs_time.to_i == Time.now.to_i # block.call # end # end # } # end # # def tsort_each_child(node, &block) # @dep[node].each(&block) # end # include TSort # end # # def command(arg) # print arg, "\n" # system arg # end # # m = Make.new # m.rule(%w[t1]) { command 'date > t1' } # m.rule(%w[t2]) { command 'date > t2' } # m.rule(%w[t3]) { command 'date > t3' } # m.rule(%w[t4], %w[t1 t3]) { command 'cat t1 t3 > t4' } # m.rule(%w[t5], %w[t4 t2]) { command 'cat t4 t2 > t5' } # m.build('t5') # # == Bugs # # * 'tsort.rb' is wrong name because this library uses # Tarjan's algorithm for strongly connected components. # Although 'strongly_connected_components.rb' is correct but too long. # # == References # # R. E. Tarjan, "Depth First Search and Linear Graph Algorithms", # <em>SIAM Journal on Computing</em>, Vol. 1, No. 2, pp. 146-160, June 1972. # module TSort VERSION = "0.2.0" class Cyclic < StandardError end # Returns a topologically sorted array of nodes. # The array is sorted from children to parents, i.e. # the first element has no child and the last node has no parent. # # If there is a cycle, TSort::Cyclic is raised. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # p graph.tsort #=> [4, 2, 3, 1] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # p graph.tsort # raises TSort::Cyclic # def tsort each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.tsort(each_node, each_child) end # Returns a topologically sorted array of nodes. # The array is sorted from children to parents, i.e. # the first element has no child and the last node has no parent. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # If there is a cycle, TSort::Cyclic is raised. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.tsort(each_node, each_child) #=> [4, 2, 3, 1] # # g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.tsort(each_node, each_child) # raises TSort::Cyclic # def self.tsort(each_node, each_child) tsort_each(each_node, each_child).to_a end # The iterator version of the #tsort method. # <tt><em>obj</em>.tsort_each</tt> is similar to <tt><em>obj</em>.tsort.each</tt>, but # modification of _obj_ during the iteration may lead to unexpected results. # # #tsort_each returns +nil+. # If there is a cycle, TSort::Cyclic is raised. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # graph.tsort_each {|n| p n } # #=> 4 # # 2 # # 3 # # 1 # def tsort_each(&block) # :yields: node each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.tsort_each(each_node, each_child, &block) end # The iterator version of the TSort.tsort method. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # TSort.tsort_each(each_node, each_child) {|n| p n } # #=> 4 # # 2 # # 3 # # 1 # def self.tsort_each(each_node, each_child) # :yields: node return to_enum(__method__, each_node, each_child) unless block_given? each_strongly_connected_component(each_node, each_child) {|component| if component.size == 1 yield component.first else raise Cyclic.new("topological sort failed: #{component.inspect}") end } end # Returns strongly connected components as an array of arrays of nodes. # The array is sorted from children to parents. # Each elements of the array represents a strongly connected component. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # p graph.strongly_connected_components #=> [[4], [2], [3], [1]] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # p graph.strongly_connected_components #=> [[4], [2, 3], [1]] # def strongly_connected_components each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.strongly_connected_components(each_node, each_child) end # Returns strongly connected components as an array of arrays of nodes. # The array is sorted from children to parents. # Each elements of the array represents a strongly connected component. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.strongly_connected_components(each_node, each_child) # #=> [[4], [2], [3], [1]] # # g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.strongly_connected_components(each_node, each_child) # #=> [[4], [2, 3], [1]] # def self.strongly_connected_components(each_node, each_child) each_strongly_connected_component(each_node, each_child).to_a end # The iterator version of the #strongly_connected_components method. # <tt><em>obj</em>.each_strongly_connected_component</tt> is similar to # <tt><em>obj</em>.strongly_connected_components.each</tt>, but # modification of _obj_ during the iteration may lead to unexpected results. # # #each_strongly_connected_component returns +nil+. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # graph.each_strongly_connected_component {|scc| p scc } # #=> [4] # # [2] # # [3] # # [1] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # graph.each_strongly_connected_component {|scc| p scc } # #=> [4] # # [2, 3] # # [1] # def each_strongly_connected_component(&block) # :yields: nodes each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.each_strongly_connected_component(each_node, each_child, &block) end # The iterator version of the TSort.strongly_connected_components method. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc } # #=> [4] # # [2] # # [3] # # [1] # # g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc } # #=> [4] # # [2, 3] # # [1] # def self.each_strongly_connected_component(each_node, each_child) # :yields: nodes return to_enum(__method__, each_node, each_child) unless block_given? id_map = {} stack = [] each_node.call {|node| unless id_map.include? node each_strongly_connected_component_from(node, each_child, id_map, stack) {|c| yield c } end } nil end # Iterates over strongly connected component in the subgraph reachable from # _node_. # # Return value is unspecified. # # #each_strongly_connected_component_from doesn't call #tsort_each_node. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # graph.each_strongly_connected_component_from(2) {|scc| p scc } # #=> [4] # # [2] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # graph.each_strongly_connected_component_from(2) {|scc| p scc } # #=> [4] # # [2, 3] # def each_strongly_connected_component_from(node, id_map={}, stack=[], &block) # :yields: nodes TSort.each_strongly_connected_component_from(node, method(:tsort_each_child), id_map, stack, &block) end # Iterates over strongly connected components in a graph. # The graph is represented by _node_ and _each_child_. # # _node_ is the first node. # _each_child_ should have +call+ method which takes a node argument # and yields for each child node. # # Return value is unspecified. # # #TSort.each_strongly_connected_component_from is a class method and # it doesn't need a class to represent a graph which includes TSort. # # graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_child = lambda {|n, &b| graph[n].each(&b) } # TSort.each_strongly_connected_component_from(1, each_child) {|scc| # p scc # } # #=> [4] # # [2, 3] # # [1] # def self.each_strongly_connected_component_from(node, each_child, id_map={}, stack=[]) # :yields: nodes return to_enum(__method__, node, each_child, id_map, stack) unless block_given? minimum_id = node_id = id_map[node] = id_map.size stack_length = stack.length stack << node each_child.call(node) {|child| if id_map.include? child child_id = id_map[child] minimum_id = child_id if child_id && child_id < minimum_id else sub_minimum_id = each_strongly_connected_component_from(child, each_child, id_map, stack) {|c| yield c } minimum_id = sub_minimum_id if sub_minimum_id < minimum_id end } if node_id == minimum_id component = stack.slice!(stack_length .. -1) component.each {|n| id_map[n] = nil} yield component end minimum_id end # Should be implemented by a extended class. # # #tsort_each_node is used to iterate for all nodes over a graph. # def tsort_each_node # :yields: node raise NotImplementedError.new end # Should be implemented by a extended class. # # #tsort_each_child is used to iterate for child nodes of _node_. # def tsort_each_child(node) # :yields: child raise NotImplementedError.new end end